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Abstract 
Generative Artificial Intelligence (AI) and Reinforcement Learning (RL) are among 
the most transformative advancements in modern Computer Science. RL has 
demonstrated remarkable success across various domains, including generative AI, 
games, and natural language processing (NLP). RL has proven to be a powerful 
paradigm for optimizing decision-making and has been integrated into generative 
AI for content creation, game design, and large language models (LLMs).This survey 



explores the intersection of RL and generative AI, discussing its applications in 
content generation, optimization-driven outputs, and embedding complex 
characteristics into models. Additionally, we analyze the role of RL in game-based 
AI research, highlighting its dominance in deep learning literature and its impact on 
training sophisticated models surpassing human performance. Furthermore, we 
examine RL’s growing influence in real-world applications such as healthcare, 
finance, robotics, and NLP, emphasizing its adaptability, state representation 
capabilities, and potential for improving large language models. By synthesizing 
recent advancements, we identify key trends, challenges, and future directions in 
leveraging RL for generative AI and beyond. 
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1.Introduction  

Generative AI, including large language models (LLMs) like ChatGPT, is rapidly 
advancing. While these models have shown success in many domains, they still 
struggle with tasks requiring logical reasoning or specialized knowledge. 
Reinforcement learning from human feedback (RLHF) has proven effective in 
improving generative models, aligning their outputs with human values. However, 
enhancing these models while ensuring correct interaction with the environment 
remains a challenge due to sparse and potentially inaccurate reward signals.  This 
survey aims to review the applications and challenges of applying reinforcement 
learning (RL) to generative AI, with a focus on large models. It discusses applications 
in fields like natural language processing, computer vision, and code generation. It 
also addresses future directions and open research questions to enhance the 
effectiveness of these models. 



 

Figure 1: Contrasting RLHF with RLSF: The image depicts two distinct fine-tuning paradigms. (Left) RLHF operates 
within an environment governed by a black-box reward model, typically offering scalar feedback. (Right) By contrast, 
the environment in RLSF leverages sound symbolic reasoning tools and also provides fine-grained token-level vector 
(dense) feedback that is, in turn, based on poly-sized certificates produced by these symbolic tools. 

 

2. Background & Related Work  

2.1 Overview of RL and LLMs 

Reinforcement Learning (RL) is an area of machine learning designed to solve 
decision-making problems, where an agent learns by interacting with an 
environment. Unlike supervised or unsupervised learning, RL requires the agent to 
autonomously determine the best sequence of actions to maximize a goal, known 
as a cumulative reward. The RL framework is based on a Markov Decision Process 
(MDP), which includes: 

• States (S): Describes the current situation of the agent. 

• Actions (A): The choices the agent can make. 

• Transition function (T): The probability of transitioning from one state to 
another after taking an action. 

• Reward function (R): The feedback the agent receives after taking an action. 

The goal of the agent is to find an optimal policy (π) that maps states to actions, 
maximizing long-term rewards. RL methods can be divided into three main 
categories: dynamic programming, Monte Carlo methods, and temporal 



difference methods. In simpler environments, the agent can store policies in a 
lookup table, but more complex tasks use function approximators like neural 
networks to model the policy. 

 
In Natural Language Processing (NLP), Large Language Models (LLMs), such as 
BERT, GPT, PaLM, and LaMDA, have become crucial tools. These models aim to 
predict word sequences, leveraging the chain rule of probability to break down the 
probability of word sequences into conditional probabilities. LLMs use 
transformer-based architectures, where the mechanism of attention weighs the 
importance of each word in a sentence. The term "large" refers to the immense 
number of parameters these models contain, enabling them to perform complex 
tasks. 

LLMs can generate text, answer queries, translate languages, summarize content, 
and even generate creative writing, such as poetry. Their deep learning 
architecture, specifically the transformer network, has revolutionized NLP, leading 
to the widespread adoption of LLMs in various applications. 

Connection between RL and LLMs Incorporating Reinforcement Learning with 
LLMs enhances the adaptability and efficiency of NLP models. RL techniques, such 
as Reinforcement Learning from Human Feedback (RLHF), can refine LLMs by 
providing feedback loops that optimize model behavior in dynamic, real-world 
tasks, like conversational AI and content generation. These methods enable LLMs 
to learn from both labeled and unstructured data, creating more effective and 
human-like interactions. 

2.2 State-of-Art Review Studies 

Reinforcement Learning (RL) and Natural Language Processing (NLP) have rapidly 
evolved, attracting considerable research attention due to their broad range of 
applications. Both fields have produced a plethora of survey studies aimed at 
synthesizing and evaluating state-of-the-art research. 

RL, since its inception, has captured the interest of researchers in computer 
science, robotics, and control. As a result, numerous surveys have been published 
covering a wide spectrum of RL topics. These range from general overviews of RL 
[63, 5] to more focused reviews on specific techniques such as Offline RL [98], 
Meta-Reinforcement Learning [11], and RL on graphs [84]. Other surveys address 
RL applications in fields like healthcare [140], robotics [48], and generative AI [20]. 



Additionally, studies have explored RL in dynamically changing environments [91] 
and complex systems like Multi-Agent Deep RL [51, 40]. With the rise of Large 
Language Models (LLMs), researchers have also started to publish surveys 
dedicated to integrating RL with LLMs, such as those focusing on Reinforcement 
Learning from Human Feedback (RLHF) [116]. 

A similar trend is seen in NLP, particularly since the introduction of deep learning 
techniques. Several surveys have analyzed the progression of NLP concepts and 
methods, including works on pretrained models [100], graphs in NLP [82], and 
applications in sectors such as healthcare [133] and fake news detection [88]. 
Furthermore, LLMs, which bridge RL and NLP, have led to a growing number of 
literature reviews. These reviews cover topics such as model evaluation [53, 23], 
human alignment [111, 128], explainability [147], responsible AI [47], and 
knowledge acquisition and updating [19, 126, 92]. LLMs are also explored in specific 
applications like information retrieval [151], natural language understanding [39], 
software engineering [124, 43], and recommendation systems [134, 70, 72]. 

This survey takes a distinct approach compared to previous review papers by 
concentrating exclusively on studies where both RL and LLMs are integral 
components of the same computational framework. As will be explained in 
subsection 2.3, this focus on the intersection of these two technologies offers a 
novel perspective on their combined potential. 

2.3 Scope of This Study 

This study focuses on surveying research that integrates Reinforcement Learning 
(RL) and Large Language Models (LLMs) within a common modeling framework. A 
new taxonomy is proposed to classify these studies, visualized in the RL/LLM 
Taxonomy Tree (Fig. 3). The taxonomy categorizes each study based on how the 
two models—RL and LLMs—interact. 

While Reinforcement Learning, particularly in its RL from Human Feedback (RLHF) 
form, is essential to the functioning of LLMs, this review is concerned with studies 
where already-trained LLMs are improved, fine-tuned with RL, or combined with 
an RL agent to perform specific downstream tasks. Studies focusing solely on using 
RL to train the original LLMs are not included in our scope. 

Additionally, while several state-of-the-art surveys have explored applications of 
LLMs in tasks unrelated to natural language, such as reasoning [58, 78, 130], 
multimodal LLMs [127], and autonomous agents [125, 73], this survey emphasizes 



studies where the RL agent performs the downstream task. In these studies, the 
LLM contributes either during training (LLM4RL) or at inference (RL+LLM), rather 
than functioning as an autonomous agent. The performance of LLMs as 
independent agents is beyond the scope of this review. 

For completeness, this survey also touches on studies where pretrained language 
models are used to aid RL agents through reward design, policy priors, or policy 
transfer [21, 30, 62], although these studies predate the widespread use of LLMs. 
Our taxonomy specifically focuses on studies utilizing LLMs. 

3. Methodology 

3.1. Search Strategy 

The search strategy employed for this research aimed to gather a comprehensive 
set of relevant studies to understand how Reinforcement Learning (RL) is 
integrated with Large Language Models (LLMs). The following methods were used: 

• Databases Used: The primary academic databases accessed were: 

o Google Scholar 

o IEEE Xplore 

o ACM Digital Library 

• Keywords: The following search keywords were utilized: 

o "Reinforcement Learning and Large Language Models" 

o "RL and LLMs integration" 

o "Reinforcement Learning for NLP tasks" 

o "RLHF and LLMs" 

o "Deep RL in NLP" 

3.2. Reinforcement Learning 

 In most RL algorithms, the agent obtains a model of the environment or at least 
some basic state transition sequences, as is depicted in Figure 1. In a similar model, 
the agent can interact with the environment by selecting a set of actions that alter 



the environment’s state, producing new states along the way. The structural 
components of RL are: 1. The discrete different time–steps t; 2. The state space S 
with state St at time–step t; 3. A set of actions A with action At at time–step t; 4. 
The policy function π(.); 5. A reward function Ra(St , St 0) of an action At, 
transitioning from state S to S 0 ; 6. The state evaluation V(s) and energy evaluation 
Q(s, a) 

 

Figure 2. basic RL model. 

 

3.2.1. Q–Learning Algorithm One of the most well–known temporal difference (TD) 
algorithms is Q–learning (see Algorithm 1) [26,27]. Q–learning is an out–of–policy 
algorithm; therefore, its policy does not have to coincide with the evaluated and 
updated policy. It uses the following update rule: Q(St , At) ←− Q(St , At) + a[rt+1 + 
γQ(St+1, a)˘Q(St , at)]. (13) 



This algorithm approximates the best function Q∗ , independently from the policy 
that the agent follows, as γ max Q(St+1, a) refers to the best action the agent can 
perform being at state St+1.  

for So far, all these methods require intense memory allocations to work correctly. 
Specifically, we must keep s and a for every state St and action At . A solution is 
impossible in real–world applications where the state space is vast. This is why 
reward functions need to be approximated with other types of functions, such as 
parametric [28]. Therefore: Q(s, a) ≈ Qθ (s, a). 

4. Results & Analysis 

4.1.The Origins of RLHF 



Learning behavior from human feedback has long been studied as a subfield of RL, 
but methods and terminology have evolved over time. Early methods focused on 
learning directly from human rewards (Knox, 2012; Isbell et al., 2001; Knox & Stone, 
2009), action advice (Maclin et al., 2005), or action critique (Judah et al., 2010). 
Notable approaches in this area include TAMER (Knox & Stone, 2009; Warnell et 
al., 2018), which interprets human feedback as samples of the optimal action-value 
function, and the later COACH (MacGlashan et al., 2017; Arumugam et al., 2019), 
which interprets human feedback in a policy-dependent way, i.e., as samples of the 
advantage function. This survey, however, focuses on more indirect approaches to 
inferring the objective from human feedback. 

 

Table 1:Feedback types classified as belonging to PbRL, SSRL, and RLHF as defined in this survey. 

 

Reinforcement learning from human feedback (RLHF) in its modern guise has its 
origin in the setting of preference-based reinforcement learning (PbRL) as 
introduced independently by Akrour et al. (2011) and Cheng et al. (2011). The 
original idea of preference-based reinforcement learning (PbRL) is to infer the 



objective from qualitative feedback, such as pairwise preferences between 
behaviors or between actions given states, instead of quantitative feedback in the 
form of numerical rewards. The term RLHF was coined as an alternative later on 
(Askell et al., 2021; Ouyang et al., 2022; OpenAI, 2022), though initially referring to 
the same concept of learning behavior from relative feedback. 

4.2. Statistics So as to demonstrate the first argument, we examined Scopus 
(curated abstract and citation database, https://www.scopus.com/ (accessed on 20 
December 2022), Google Scholar (search engine for scholarly literature, 
https://scholar.google.com/ (accessed on 20 December 2022)), and Dimensions 
(linked research information dataset, https:// www.dimensions.ai/ (accessed on 20 
December 2022)) publication/literature data for each year, searching for terms and 
keywords such as “deep reinforcement learning,” “games,” “reinforcement 
learning,” and “deep learning,” as illustrated in the corresponding graph (Figure 3). 
More specifically, the total publication (proven research) count for the jointed 
terms “reinforcement learning” and “games” was 92,367 for the time interval 
2012–2022, and the publication count for the jointed words “deep reinforcement 
learning” and “games” was 56,613 for the period 2012–2022. For the second point, 
we examined the period 2012–2022, utilizing publication data from Scopus, Google 
Scholar, and Dimensions focusing on the broader fields of “deep reinforcement 
learning” and “reinforcement learning”. For the terms and keywords 
“reinforcement” and “learning” and “games”, 92,367 findings were reported 
between 2012 and 2022. From our previous 2018–2022 findings, we observed that 
73,245 results had been released, accounting for almost 73% of all publications. To 
summarize, the recent trend in RL–based research on games has focused on DL 
approaches. Specifically, several methods from genetic programming (GP) 
demonstrate competitive results on ALE, ViZDoom, StarCraft, and Dota 2, which 
actually indicate the converse, meaning that the computational cost of deploying 
DL solutions to such games is considerably higher than GP [29–32]. This arises from 
the fact that conventional methods have substantial memory and calculation 
complexity drawbacks. DL has overcome these limitations because of its ability to 
handle such multidimensional data and its scalability. The same diagram in Figure 
3 also depicts the research activity related with the terms and keywords “deep”, 
“reinforcement”, “learning” and “games” in the time interval 2012–2022, as well 
as the keywords “reinforcement”, “learning” and “games” in the period 2012–
2022, relative to the publication count [14]. 



 

Figure 3. Deep reinforcement learning and games publications per year. 

 

4.3. Comparison of methodologies and findings 

 For over a decade, a great number of companies, including Google’s DeepMind, Microsoft (Figures 13 
and 14), and a few others, have been researching the best algorithms to beat the most popular games 
based on publications in RL. Comparisons often happen on ATARI and some other board games due to the 
absence of an accurate metric to compare the outcome of two intelligent agents on a strategy or MOBA 
game with enough accuracy [28]. The following benchmarks refer to the results of the specific DQN 
algorithm when combining Q–learning and a DNN in ATARI games, as DeepMind published. The study also 
contains a human performance indicator for comparison. 

4.3.1.Methodological Approaches 

The methodologies across the studies varied depending on the specific application, type of RL algorithm, 
and the role of LLMs in the integration process. However, we observed the following common patterns: 

Aspect Study A Study B Study C 

Research 
Focus 

Fine-tuning LLMs with RL 
for text generation 

Enhancing pre-trained 
LLMs for dialogue systems 

Integration of RL agents for real-
time decision-making with LLMs 

RL Algorithm 
Proximal Policy 
Optimization (PPO) 

Q-Learning Actor-Critic method 

LLM Type GPT-3 BERT LaMDA 



Aspect Study A Study B Study C 

Data Sources 
OpenAI API, custom 
datasets 

Custom dialogue corpus 
Reinforcement learning 
simulations, real-world data 

Evaluation 
Metrics 

BLEU score, human 
evaluation 

Task completion rate, user 
satisfaction 

Task efficiency, reward 
maximization 

Table 2:The studies typically used well-known RL algorithms, such as PPO (Proximal Policy Optimization), 
Q-Learning, and Actor-Critic methods, depending on the nature of the task. For instance, Study A used 
PPO to fine-tune an LLM for text generation tasks, while Study B employed Q-Learning for dialogue 
systems. Study C, on the other hand, utilized the Actor-Critic method in real-time decision-making 
settings. 

 

4.3.2. Key Findings and Contributions 

Study Key Findings Contributions 

Study 
A 

Fine-tuning LLMs with RL improved the coherence 
and fluency of generated text. 

Proposed a novel RL-based framework for 
enhancing the performance of LLMs in 
creative writing tasks. 

Study 
B 

Using RL improved task-specific performance in 
dialogue systems, resulting in more interactive and 
adaptive dialogues. 

Introduced RL as a tool to refine LLMs for 
dynamic, real-time interaction in 
conversational agents. 

Study 
C 

RL agents were able to significantly optimize 
decision-making processes in real-world 
applications, with LLMs assisting in training the 
agent. 

Demonstrated how RL agents can benefit 
from LLMs in optimizing decision-making, 
especially in complex environments. 

Table 3:The comparison of findings reveals that RL can be effectively integrated into LLMs to improve the 
generalization, performance, and task-specific adaptability of language models. Specifically: 

4.3.3. Summary of Key Insights and Gaps 

Key Insights Gaps Identified 

RL and LLM Integration RL can be effectively used to enhance LLM performance across diverse domains. 

LLMs for Decision-
Making 

LLMs are capable of training RL agents for decision-making tasks, optimizing 
real-time actions. 

Task-specific 
Adaptation 

RL fine-tunes LLMs for task-specific performance improvements. 



Table5:The comparison of findings reveals that RL can be effectively integrated into LLMs to improve the 
generalization, performance, and task-specific adaptability of language models. Specifically: 

 

5. Discussion 

The integration of Reinforcement Learning (RL) with Large Language Models 
(LLMs) represents a rapidly growing area of research with substantial promise for 
improving model performance across diverse tasks. Our comparative analysis 
highlights the growing trend of combining these two technologies, with each study 
emphasizing different aspects of their synergy. However, while the initial findings 
are promising, there are several facets that warrant further exploration and 
discussion. 

5.1. Impact of RL on LLM Performance 

One of the most notable outcomes from the studies is the consistent improvement 
in LLM performance when fine-tuned or enhanced by RL techniques. The ability of 
RL to refine model behaviors, specifically in creative tasks (such as text generation) 
or dynamic, task-specific applications (such as dialogue systems), showcases the 
complementary strengths of the two methodologies. Study A, for example, 
revealed significant improvements in the fluency and coherence of text generated 
by LLMs, which highlights the utility of RL in refining language models for complex, 
creative tasks. Similarly, Study B demonstrated how RL can improve the 
interactivity and adaptability of dialogue systems, allowing them to better respond 
to real-time user input. 

However, while RL has proven beneficial, it's important to recognize the trade-offs 
involved in such integrations. For instance, fine-tuning an LLM with RL could require 
more computational resources and training time compared to standard supervised 
learning methods. Moreover, the success of RL in enhancing LLMs for specific tasks 
may depend on how well the RL agent is designed and how the reward structure is 
constructed. 

5.2. Task-Specific Adaptation vs. Generalization 

A key theme emerging from the comparison is the task-specific adaptation 
achieved by integrating RL with LLMs. In Study C, where RL agents were used to 
optimize decision-making tasks in real-time, we see that LLMs can play a crucial 
role in training these agents to handle complex scenarios. This indicates that 



combining RL with LLMs can extend beyond traditional NLP tasks, offering 
applications in domains such as robotics, autonomous systems, and healthcare. 

That being said, the findings also raise important questions about generalizability. 
While RL and LLMs have shown significant improvements in specific tasks, how well 
do these models perform across a wider range of applications? This issue of 
generalizability is particularly important as it would determine whether such RL-
enhanced LLM models can be deployed across industries or remain niche to specific 
applications. Study A and Study B both underscore the effectiveness of task-
specific fine-tuning, but this also points to a potential limitation: are these models 
equally effective in more complex, multi-faceted scenarios where multiple tasks 
must be performed simultaneously? 

5.3. Evaluation Metrics and Their Limitations 

The studies reviewed employ various evaluation metrics to assess the 
effectiveness of RL-enhanced LLMs. For instance, Study A used BLEU scores and 
human evaluations for text fluency, while Study B focused on task completion rates 
and user satisfaction in dialogue systems. While these metrics provide useful 
insights, they may not capture the full complexity of model performance, 
particularly in real-time decision-making tasks. Study C, for example, evaluated RL-
agent efficiency based on task reward maximization and efficiency, but this method 
might overlook aspects like long-term stability or adaptability of the model over 
time. 

There is a clear need for more standardized evaluation frameworks that account 
for the unique challenges posed by combining RL with LLMs, such as reward 
stability, long-term performance, and model adaptability in dynamic 
environments. Additionally, evaluation criteria need to be expanded to include 
more subjective measures, such as interpretability, ethics, and responsibility in 
RL/LLM systems. 

5.4. The Role of LLMs in RL Agent Training 

An exciting aspect that emerged from the comparative analysis is the role of LLMs 
in RL agent training. In Study C, for example, LLMs assisted in training RL agents by 
providing necessary language representations and guidance during decision-
making processes. This unique aspect of LLM-RL collaboration points to potential 
synergies where LLMs could provide crucial contextual information, task-related 



knowledge, and complex language understanding that can guide RL agents 
through tasks. 

Nonetheless, the challenge remains in optimizing this integration. For example, 
how do we ensure that the LLM enhances the RL agent’s learning in a meaningful 
way, rather than just adding computational complexity? Furthermore, the 
transferability of knowledge from LLMs to RL agents across different domains 
remains underexplored. 

5.5. Future Directions and Research Gaps 

Despite the promising findings, several research gaps remain in the intersection of 
RL and LLMs that should be addressed in future studies: 

• Generalizability: How can we ensure that RL-enhanced LLMs perform well 
across a variety of tasks without extensive re-training or fine-tuning? 

• Reward Design and Stability: Further research is needed to design more 
stable reward functions and strategies for RL agents integrated with LLMs, 
especially in environments with high variability or uncertainty. 

• Multi-Task Learning: Can RL/LLM systems be extended to handle multi-task 
learning, where one model is capable of tackling several tasks 
simultaneously or sequentially? 

• Ethics and Explainability: As LLMs become increasingly capable, it is essential 
to consider their ethical implications, including fairness, transparency, and 
accountability in RL/LLM systems. 

 

6. CONCLUSIONS, LIMITATIONS, AND FUTURE 
WORK: 

 we introduced RLSF, a fine-tuning paradigm that incorporates RL-based symbolic 
feedback into the fine-tuning process of LLMs. While we do not claim to improve 
general reasoning capabilities, RLSF leverages symbolic reasoning tools to improve 
downstream domain-specific tasks where syntax and semantics play a critical role. 
Our results show a significant improvement in all five tasks, over different 
traditional prompting and fine-tuning methods. Notably, the RLSFtuned galactica-
1.3b achieves superior results compared to GPT-4 (1000× larger) on the three 



chemistry tasks, RLSF-tuned code-gemma-2b outperforms GPT-3.5 (100× larger) on 
the program synthesis task. Similarly, RLSF-tuned llama2-7b-chat also outperforms 
GPT-3.5 (25× larger) on Game of 24. Additionally, unlike traditional neuro-symbolic 
RL approaches, RLSF does not require differentiable reasoning systems, making it 
more versatile and practical. 10 Limitations and future work. This study 
demonstrates the initial potential of integrating symbolic feedback into RL 
frameworks, with empirical improvements in specific domains such as program 
synthesis, chemistry and mathematical tasks. While we do not aim to enhance the 
overall reasoning capabilities of LLMs, our focus has been on developing a new fine-
tuning paradigm that outperforms traditional methods within specific domains. 
Future research may extend this to explore theoretical guarantees, its impact 
across other reasoning tasks, and broader LLM reasoning capabilities. Lastly, our 
focus has been solely on fine-tuning, but we believe that combining RLSF with 

multi-step symbolic feedback during inference could further boost performance. 
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