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Abstract

Real-time image and video denoising and deblurring are challenging due to
computational complexity and diverse distortions. Recent deep learning
advancements use spatial-temporal modeling, attention mechanisms, and generative
models (e.g., Residual Dense RNNs, Swin Transformers) to enhance restoration and
enable real-time performance [ 1, 2]. Techniques like global-local attention and motion
vectors improve adaptability [1], while new datasets address real-world benchmarks
[6]. Joint frameworks tackle deblurring, denoising, and low-light enhancement [1, 3],
with lightweight models (e.g., PTFN, RCD) supporting mobile deployment [6].

1.Introduction

In recent years, the demand for fast and efficient image and video processing techniques has
increased, especially with the widespread use of cameras in mobile devices, surveillance systems,
and digital media. These media face major challenges such as denoising and motion blur removal
(deblurring), which directly affect the quality and effectiveness of the content in applications like
computer vision and augmented reality [1], [6].

With advancements in artificial intelligence, solutions based on deep neural networks, transformers,
and diffusion models have emerged to enhance the quality of images and videos in real-time. For
example, models have been developed that combine multiple tasks such as multi-frame interpolation
with simultaneous motion blur removal [1].

Hybrid transformer techniques have also contributed to improving the recovery of sharp video details,
thereby enhancing the accuracy of motion blur removal [2]. Additionally, diffusion models have
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proven effective in addressing image and video denoising, as demonstrated in studies like Swin-Diff
[3] and Denoising Diffusion Models for Plug-and-Play Image Restoration [4].

These studies aim to provide integrated solutions that operate efficiently in real-time, with control
over the quality of restoration and processing speed, as developed in the paper Real-time Controllable
Denoising for Image and Video [5], along with improvements in temporal information fusion to
enhance video denoising quality, as seen in the paper Towards High-Quality Real-Time Video
Denoising with Pseudo Temporal Fusion Network [6].

With the above improvement, the proposed method can achieve better performance with less
computational cost against SOTA deblurring methods, as illustrated in Fig. 1(a). Due to making full
use of spatiotemporal dependency of video signal, our method is exceptionally good at restoring
high-frequency details of the blurry frame compared with SoTA video deblurring methods, as shown
in Fig. 1(b).
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Fig. 1 A comparison of network efficiency on video deblurring.

2 .Background & Related work (Literature Review)

2.1. Denoising

Traditional image and video denoising methods have historically depended on prior
assumptions such as sparse image priors, non-local similarity, and other related
techniques. These approaches established the groundwork for early denoising efforts. The
emergence of deep learning has shifted the paradigm, with learning-based methods
achieving state-of-the-art results. Early attempts, such as those employing multi-layer
perceptrons, demonstrated competitive performance compared to traditional methods like
BM3D. Recent advancements have seen the dominance of convolutional neural network-
based techniques and Transformer-based approaches in image and video denoising.
However, these methods primarily focus on designing novel network architectures to
enhance denoising performance, often producing a single output without the flexibility to
adjust denoising levels based on user feedback. This limitation hinders their practical
application in real-world scenarios. Additionally, while techniques like pruning and



quantization can accelerate these neural network-based methods, their computational
heaviness restricts real-time denoising control.

2.2. Controllable Denoising

Conventional deep-learning methods for image and video denoising typically generate
fixed results with a predetermined restoration level. Recent developments have
introduced controllable denoising techniques, enabling users to adjust the restoration
effect without retraining the network. Methods like DNI and AdaFM leverage the
observation that filters learned by models trained at different restoration levels share
similar visual patterns. DNI interpolates parameters between related networks to achieve
smooth, continuous restoration effects, while AdaFM applies feature modulation filters
after each convolutional layer. CFSNet proposes an adaptive learning strategy using
interpolation coefficients to couple intermediate features between a main branch and a
tuning branch. In contrast, alternative approaches treat modulation as a conditional image
restoration problem, employing joint training strategies. CUGAN introduces a GAN-
based framework to address the over-smoothing issue common in PSNR-oriented
methods. However, these controllable methods are limited to training with synthetic
degradations, requiring explicit degradation levels during training. When applied to real-
world data, methods trained for blind Additive White Gaussian Noise often overfit,
leading to significant performance drops. Moreover, these techniques rely on auxiliary
conditional networks, necessitating a separate network inference for each target
restoration level.

2.3. Image and Video Deblurring

Deep learning has significantly advanced single image deblurring, with methods being
widely explored. One approach introduced a scale-recurrent network using a coarse-to-
fine scheme to extract multi-scale features from blurry images, while another proposed a
deep hierarchical multi-patch network inspired by spatial pyramid matching for handling
blurry images effectively. Another utilized an asymmetric autoencoder and a fully-
connected network for self-supervised image deblurring, and a reevaluation of the coarse-
to-fine approach proposed a fast and accurate deblurring network.

For video deblurring, a spatial-temporal recurrent network with a dynamic temporal
blending layer was developed to restore latent frames. Another method enhanced this by
incorporating an optical flow estimation step to align and aggregate information across
neighboring frames. A spatially variant RNN integrated with CNNs was employed to
address spatially variant blur in dynamic scenes, while a combination of non-local blocks,
recursive blocks, and a temporal loss function captured complex spatio-temporal patterns.
Deformable convolution in a pyramid manner was introduced for better temporal
alignment, and simultaneous estimation of optical flow and latent frames using a temporal
sharpness prior fed estimated flow back into the reconstruction network. A spatiotemporal
pyramid module captured multi-scale spatial and temporal information, and temporal-
spatial and channel attention mechanisms modeled complex blur patterns. Enhanced
RNN cells with residual dense blocks enabled efficient spatial feature extraction, adding
a global spatio-temporal attention module to fuse hierarchical features from past and
future frames.



Existing video deblurring methods often assume consecutive blurry frames, which may
not align with real-world scenarios where some frames remain sharp. One approach
addressed this by detecting sharp frames and using them to guide the restoration of blurry
frames, though their simple concatenation approach limits the exploitation of sharp
textures. This work aims to propose a new framework to better leverage sharp frames for
improved video deblurring.

Fig. 2 Framework of the proposed efficient spatio-temporal recurrent neural network.
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In this paper, we adopt a RNN framework similar to [1]. Our method is different from [1]
in that we integrate RDB into the RNN cell in order to exploit the potential of the RNN
cell through feature reusing and generating hierarchical features for the current frame.
Furthermore, we propose a GSA module to selectively merge effective hierarchical
features from both past and future frames, which enables our model to utilize the spatio-
temporal information more efficiently.

3.Challenges

The field of video deblurring and denoising faces several persistent challenges driven by the
complexity of real-world scenarios and the shortcomings of current methods. Below is a summary of
key challenges framed generally to reflect broader trends in recent research.

3.1. Dynamic and Unknown Motion Blur

Challenge: Motion blur typically found in real-world videos results from uncontrolled camera
exposure time and fast-moving objects. Due to a lack of prior knowledge about exposure time or
motion paths, any attempt to model such blur becomes highly sophisticated.

Research Directions: Temporal dependencies in RNNs and hybrid transformers are being explored
for capturing dependencies between frames. Multi-frame interpolation and alignment are becoming
more popular for multi-frame retrieval.

3.2. Speed vs Quality
Challenge: The most modern models, like diffusion-based designs, achieve the highest quality

restoration; however, their repetitive inference steps are costly in terms of computation, making real-
time use very difficult.



Research Directions: Simplified architectures like pseudo-temporal fusion networks, along with
model pruning, aim to decrease latency. Also, adaptive inference that deals with critical frames or
regions first is being studied.

3.3. Multi-Task Learning's Competing Needs

Challenge: Solving a combination of deblurring, denoising, and low-light enhancement
simultaneously usually creates conflicting goals. For instance, brightening an image can increase
noise significantly, and aggressive denoising can remove fine details.

Research Directions: It is suggested that modular architectures with task-specific branching and a
shared feature extraction backbone aim to resolve the balance between specialization and synergetic
cooperation. Task-driven dynamic attention allows allocation of computational resources depending
on the importance of a task.

3.4. Synthetic-to-Real Domain Gap

Challenge: Many datasets are synthesized and do not consider real-world scenarios. Thus, real-world
videos consistently include noise, have erratic lighting, or diverse motion patterns.

Research Directions: Focus shifts onto self-supervised and unsupervised learning methods aimed
towards unlabeled real-world data. In addition, models are trained to imitate the degradation of real-
world data in diverse ways, including training with diffusion models.

3.5. Recovering Motion and Shape from Single Frames

Challenge: Challenge: Single-image deblurring is an ill-posed problem, attempting to reconstruct
accurate motion trajectories or shapes for fast-moving objects that require inferring a plethora of
information.

Research Directions: Increasingly popular are physics-informed models which combine deep
learning with motion equations or optical flow priors. Probabilistic approaches, including diffusion
models, propose estimating plausible trajectories by generating multiple hypotheses that need to be
validated.

3.6. Integration of Domain Knowledge

Challenge: Effectively utilizing domain-specific a priori (e.g., video compression standards or
spatiotemporal redundancies) comes with its own set of issues, particularly under-engineering the
model.

Research Directions: Self-supervised processes that integrate custom layers built to replicate certain
domain-specific processes, such as compression, are being explored alongside reinforcement
learning.

3.7. Real-Time Controllability

Challenge: Applications are only interactive when full user control of the level of
deblurring/denoising is available in real-time. Most models are not designed to incorporate style
modifications by users, without significant sacrifices to acceleration.



Research Directions: The use of controllable output parametric modulation layers alongside multi-
task designs enables real-time controls to respond as needed. Concentration on lightweight networks
designed for edge devices is another area.

4.Methods

Zhong et al. (2021) propose the Efficient Spatio-Temporal Recurrent Neural Network (ESTRNN) for
real-time video deblurring, designed to balance high-quality restoration with low computational
demands, suitable for devices like smartphones. The methodology comprises three main components:

4.1.RDB-based RNN Cell

To efficiently extract spatial features, the authors integrate Residual Dense Blocks (RDBs) into the
RNN cell. The cell processes the current blurry frame It and the previous hidden state ht—1. A
downsampling operation concatenates these inputs to produce shallow feature maps:

fF = CAT(DS(1,). hy_1),

where CAT(:) denotes concatenation, and DS(-) is a downsampling operation using 5x5
convolutional layers and an RDB module. A series of RDB modules generates a feature set f R t =
{fR1t,...,fRNt}, where N is the number of RDB modules. Hierarchical features ft are obtained
by fusing these features with a 1x1 convolutional layer:

fi = Conv(CAT(f[)).
The hidden state is updated as:
.|I|'|- = .Irfl_.rl'l

where H is a function comprising a 3x3 convolutional layer and an RDB module, facilitating
temporal information transfer.

4.2 Global Spatio-Temporal Attention (GSA) Module

The GSA module enhances deblurring by fusing hierarchical features from the current frame ft
with those from two past and two future frames (ft—2, ft—1, ft+1, ft+2). Inspired by the Squeeze-
and-Excitation block, it filters effective features from neighboring frames:

fi . = CAT(f:, fosi)s
fio = LIGAP(ff)) ® P(fEL),

where 1 € {—2, —1, 1, 2}, GAP(") is global average pooling, L(-) involves linear transformations
with ReLU and Sigmoid activations, P(-) uses 1x1 convolutions, and @ denotes element-wise
multiplication. The fused output Ft is:

Fy = Conv(CAT(f7 o, fi_ 1. fion Frea o))

This output is upsampled by deconvolutional layers to produce the deblurred frame Ot.



4.3 Beam-Splitter Deblurring (BSD) Dataset

To address the scarcity of real-world datasets, the authors developed the BSD dataset using a
beamsplitter system with two synchronized cameras. One camera captures blurry videos with
longer exposure times, and the other captures sharp videos. A center-aligned exposure scheme and
a 12.5% neutral density filter ensure alignment and photometric consistency. The dataset includes
60 training, 20 validation, and 20 test sequences at 640x480 resolution, with 100—150 frames per
sequence, across three blur settings (1ms-8ms, 2ms-16ms, 3ms-24ms). Synthetic datasets are
generated by averaging high-frame-rate frames:

.
R
I, = CRF (T;:;h ) _

where Ib is the blurry frame, S n is the n-th sharp frame, N is the
number of frames, and CRF is the camera response function.

4.4 Training Configuration

The ESTRNN model was trained on GOPRO and REDS datasets using the ADAM optimizer (Bl =
0.9, B2 =0.999), an initial learning rate of 10—4 , and MSE loss:
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where T, C, H, W are the number of frames, channels, height,
and width, and OGT t is the ground truth. For BSD, a cosine annealing schedule (learning rate 3 x 10—4
) and Charbonnier loss were used:
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with € = 1 x 10-3 , a mini-batch size of 8, and subsequence length of 8.

5 .Experiments and Results

The ESTRNN model was evaluated on synthetic (GOPRO, REDS) and real-world (BSD) datasets,
outperforming methods like STRCNN, DBN, IFI-RNN, CDVD-TSP, and PVDNet:

1. Synthetic Datasets: On GOPRO, ESTRNN (B15C70) achieved a PSNR of 30.12 dB and SSIM
of 0.8929, and on REDS, 31.94 dB and 0.8962, with computational costs of 92.57-125.55
GMAC:s, significantly lower than CDVD-TSP (5211.28 GMACs) and PVDNet (1754.90
GMAC:s).

2. BSD Dataset: On BSD, ESTRNN (B15C80) recorded PSNR/SSIM of 33.36/0.937 (1ms-8ms),
31.95/0.925 (2ms-16ms), and 31.39/0.926 (3ms-24ms), demonstrating robust performance
across varying blur intensities. Visual results showed clearer restoration, especially in complex
motion scenarios.



3. Cross-Validation: Models trained on BSD generalized well to synthetic datasets (e.g.,
PSNR/SSIM of 26.46/0.817 on GOPRO), while synthetic-trained models (e.g., GOPRO:
19.48/0.598 on BSD) produced artifacts on BSD. A 2000 fps synthetic dataset also
underperformed, highlighting BSD’s superior real-world applicability due to its complex noise
and blur characteristics.

4. Real-World Testing: On DVD dataset videos and iPhone 13 footage, BSD-trained ESTRNN
produced sharper results with fewer artifacts compared to synthetic-trained models, which struggled
with dynamic regions.

6.Conclusion and Future

While techniques like Residual Dense RNNs and Swin Transformers improve performance, they often
struggle with real-world data, such as irregular noise or sharp frames in videos. Research is moving
toward unified frameworks that address multiple tasks, like denoising and deblurring, with lightweight
models like PTFN and RCD for mobile deployment.

Future Directions
It seems likely that future research will focus on improving performance on real-world data, developing

new datasets, and reducing computational costs, potentially leading to more practical and flexible
solutions.
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